3.7.98 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{(d+e x)^{3/2} (f+g x)^5} \, dx\) [698]

Optimal. Leaf size=335 \[ -\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^2 \sqrt {d+e x} (f+g x)^3}+\frac {c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{32 g^2 (c d f-a e g) \sqrt {d+e x} (f+g x)^2}+\frac {3 c^3 d^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 g^2 (c d f-a e g)^2 \sqrt {d+e x} (f+g x)}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{4 g (d+e x)^{3/2} (f+g x)^4}+\frac {3 c^4 d^4 \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{64 g^{5/2} (c d f-a e g)^{5/2}} \]

[Out]

-1/4*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/g/(e*x+d)^(3/2)/(g*x+f)^4+3/64*c^4*d^4*arctan(g^(1/2)*(a*d*e+(a*e
^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e*g+c*d*f)^(1/2)/(e*x+d)^(1/2))/g^(5/2)/(-a*e*g+c*d*f)^(5/2)-1/8*c*d*(a*d*e+(
a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g^2/(g*x+f)^3/(e*x+d)^(1/2)+1/32*c^2*d^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/
2)/g^2/(-a*e*g+c*d*f)/(g*x+f)^2/(e*x+d)^(1/2)+3/64*c^3*d^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g^2/(-a*e*g
+c*d*f)^2/(g*x+f)/(e*x+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.30, antiderivative size = 335, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {876, 886, 888, 211} \begin {gather*} \frac {3 c^4 d^4 \text {ArcTan}\left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{64 g^{5/2} (c d f-a e g)^{5/2}}+\frac {3 c^3 d^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{64 g^2 \sqrt {d+e x} (f+g x) (c d f-a e g)^2}+\frac {c^2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{32 g^2 \sqrt {d+e x} (f+g x)^2 (c d f-a e g)}-\frac {c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{8 g^2 \sqrt {d+e x} (f+g x)^3}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{4 g (d+e x)^{3/2} (f+g x)^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/((d + e*x)^(3/2)*(f + g*x)^5),x]

[Out]

-1/8*(c*d*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(g^2*Sqrt[d + e*x]*(f + g*x)^3) + (c^2*d^2*Sqrt[a*d*e +
 (c*d^2 + a*e^2)*x + c*d*e*x^2])/(32*g^2*(c*d*f - a*e*g)*Sqrt[d + e*x]*(f + g*x)^2) + (3*c^3*d^3*Sqrt[a*d*e +
(c*d^2 + a*e^2)*x + c*d*e*x^2])/(64*g^2*(c*d*f - a*e*g)^2*Sqrt[d + e*x]*(f + g*x)) - (a*d*e + (c*d^2 + a*e^2)*
x + c*d*e*x^2)^(3/2)/(4*g*(d + e*x)^(3/2)*(f + g*x)^4) + (3*c^4*d^4*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*e^
2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(64*g^(5/2)*(c*d*f - a*e*g)^(5/2))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 876

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(d + e*x)^m*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^p/(g*(n + 1))), x] + Dist[c*(m/(e*g*(n + 1))), Int[(d +
e*x)^(m + 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f
 - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && GtQ[p,
 0] && LtQ[n, -1] &&  !(IntegerQ[n + p] && LeQ[n + p + 2, 0])

Rule 886

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(-e^2)*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^(p + 1)/((n + 1)*(c*e*f + c*d*g - b*e*g))),
 x] - Dist[c*e*((m - n - 2)/((n + 1)*(c*e*f + c*d*g - b*e*g))), Int[(d + e*x)^m*(f + g*x)^(n + 1)*(a + b*x + c
*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*
d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && LtQ[n, -1] && IntegerQ[2*p]

Rule 888

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rubi steps

\begin {align*} \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^5} \, dx &=-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{4 g (d+e x)^{3/2} (f+g x)^4}+\frac {(3 c d) \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^4} \, dx}{8 g}\\ &=-\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^2 \sqrt {d+e x} (f+g x)^3}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{4 g (d+e x)^{3/2} (f+g x)^4}+\frac {\left (c^2 d^2\right ) \int \frac {\sqrt {d+e x}}{(f+g x)^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{16 g^2}\\ &=-\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^2 \sqrt {d+e x} (f+g x)^3}+\frac {c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{32 g^2 (c d f-a e g) \sqrt {d+e x} (f+g x)^2}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{4 g (d+e x)^{3/2} (f+g x)^4}+\frac {\left (3 c^3 d^3\right ) \int \frac {\sqrt {d+e x}}{(f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{64 g^2 (c d f-a e g)}\\ &=-\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^2 \sqrt {d+e x} (f+g x)^3}+\frac {c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{32 g^2 (c d f-a e g) \sqrt {d+e x} (f+g x)^2}+\frac {3 c^3 d^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 g^2 (c d f-a e g)^2 \sqrt {d+e x} (f+g x)}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{4 g (d+e x)^{3/2} (f+g x)^4}+\frac {\left (3 c^4 d^4\right ) \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{128 g^2 (c d f-a e g)^2}\\ &=-\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^2 \sqrt {d+e x} (f+g x)^3}+\frac {c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{32 g^2 (c d f-a e g) \sqrt {d+e x} (f+g x)^2}+\frac {3 c^3 d^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 g^2 (c d f-a e g)^2 \sqrt {d+e x} (f+g x)}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{4 g (d+e x)^{3/2} (f+g x)^4}+\frac {\left (3 c^4 d^4 e^2\right ) \text {Subst}\left (\int \frac {1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{64 g^2 (c d f-a e g)^2}\\ &=-\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^2 \sqrt {d+e x} (f+g x)^3}+\frac {c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{32 g^2 (c d f-a e g) \sqrt {d+e x} (f+g x)^2}+\frac {3 c^3 d^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 g^2 (c d f-a e g)^2 \sqrt {d+e x} (f+g x)}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{4 g (d+e x)^{3/2} (f+g x)^4}+\frac {3 c^4 d^4 \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{64 g^{5/2} (c d f-a e g)^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.25, size = 240, normalized size = 0.72 \begin {gather*} \frac {c^4 d^4 ((a e+c d x) (d+e x))^{3/2} \left (\frac {\sqrt {g} \left (-16 a^3 e^3 g^3+24 a^2 c d e^2 g^2 (f-g x)-2 a c^2 d^2 e g \left (f^2-22 f g x+g^2 x^2\right )+c^3 d^3 \left (-3 f^3-11 f^2 g x+11 f g^2 x^2+3 g^3 x^3\right )\right )}{c^4 d^4 (c d f-a e g)^2 (a e+c d x) (f+g x)^4}+\frac {3 \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )}{(c d f-a e g)^{5/2} (a e+c d x)^{3/2}}\right )}{64 g^{5/2} (d+e x)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/((d + e*x)^(3/2)*(f + g*x)^5),x]

[Out]

(c^4*d^4*((a*e + c*d*x)*(d + e*x))^(3/2)*((Sqrt[g]*(-16*a^3*e^3*g^3 + 24*a^2*c*d*e^2*g^2*(f - g*x) - 2*a*c^2*d
^2*e*g*(f^2 - 22*f*g*x + g^2*x^2) + c^3*d^3*(-3*f^3 - 11*f^2*g*x + 11*f*g^2*x^2 + 3*g^3*x^3)))/(c^4*d^4*(c*d*f
 - a*e*g)^2*(a*e + c*d*x)*(f + g*x)^4) + (3*ArcTan[(Sqrt[g]*Sqrt[a*e + c*d*x])/Sqrt[c*d*f - a*e*g]])/((c*d*f -
 a*e*g)^(5/2)*(a*e + c*d*x)^(3/2))))/(64*g^(5/2)*(d + e*x)^(3/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(654\) vs. \(2(297)=594\).
time = 0.14, size = 655, normalized size = 1.96

method result size
default \(-\frac {\sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (3 \arctanh \left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{4} d^{4} g^{4} x^{4}+12 \arctanh \left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{4} d^{4} f \,g^{3} x^{3}+18 \arctanh \left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{4} d^{4} f^{2} g^{2} x^{2}+12 \arctanh \left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{4} d^{4} f^{3} g x -3 c^{3} d^{3} g^{3} x^{3} \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}+3 \arctanh \left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{4} d^{4} f^{4}+2 a \,c^{2} d^{2} e \,g^{3} x^{2} \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}-11 c^{3} d^{3} f \,g^{2} x^{2} \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}+24 a^{2} c d \,e^{2} g^{3} x \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}-44 a \,c^{2} d^{2} e f \,g^{2} x \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}+11 c^{3} d^{3} f^{2} g x \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}+16 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a^{3} e^{3} g^{3}-24 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a^{2} c d \,e^{2} f \,g^{2}+2 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a \,c^{2} d^{2} e \,f^{2} g +3 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, c^{3} d^{3} f^{3}\right )}{64 \sqrt {e x +d}\, \sqrt {\left (a e g -c d f \right ) g}\, \left (g x +f \right )^{4} g^{2} \left (a e g -c d f \right )^{2} \sqrt {c d x +a e}}\) \(655\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^5,x,method=_RETURNVERBOSE)

[Out]

-1/64*((c*d*x+a*e)*(e*x+d))^(1/2)*(3*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c^4*d^4*g^4*x^4+12*a
rctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c^4*d^4*f*g^3*x^3+18*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c
*d*f)*g)^(1/2))*c^4*d^4*f^2*g^2*x^2+12*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c^4*d^4*f^3*g*x-3*
c^3*d^3*g^3*x^3*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)+3*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2
))*c^4*d^4*f^4+2*a*c^2*d^2*e*g^3*x^2*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)-11*c^3*d^3*f*g^2*x^2*(c*d*x+a*e
)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)+24*a^2*c*d*e^2*g^3*x*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)-44*a*c^2*d^2*e*
f*g^2*x*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)+11*c^3*d^3*f^2*g*x*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)
+16*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*a^3*e^3*g^3-24*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*a^2*c*d
*e^2*f*g^2+2*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*a*c^2*d^2*e*f^2*g+3*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)
^(1/2)*c^3*d^3*f^3)/(e*x+d)^(1/2)/((a*e*g-c*d*f)*g)^(1/2)/(g*x+f)^4/g^2/(a*e*g-c*d*f)^2/(c*d*x+a*e)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^5,x, algorithm="maxima")

[Out]

integrate((c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)/((g*x + f)^5*(x*e + d)^(3/2)), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 1139 vs. \(2 (311) = 622\).
time = 3.28, size = 2317, normalized size = 6.92 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^5,x, algorithm="fricas")

[Out]

[-1/128*(3*(c^4*d^5*g^4*x^4 + 4*c^4*d^5*f*g^3*x^3 + 6*c^4*d^5*f^2*g^2*x^2 + 4*c^4*d^5*f^3*g*x + c^4*d^5*f^4 +
(c^4*d^4*g^4*x^5 + 4*c^4*d^4*f*g^3*x^4 + 6*c^4*d^4*f^2*g^2*x^3 + 4*c^4*d^4*f^3*g*x^2 + c^4*d^4*f^4*x)*e)*sqrt(
-c*d*f*g + a*g^2*e)*log(-(c*d^2*g*x - c*d^2*f + 2*a*g*x*e^2 + (c*d*g*x^2 - c*d*f*x + 2*a*d*g)*e - 2*sqrt(-c*d*
f*g + a*g^2*e)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(x*e + d))/(d*g*x + d*f + (g*x^2 + f*x)*e)) - 2
*(3*c^4*d^4*f*g^4*x^3 + 11*c^4*d^4*f^2*g^3*x^2 - 11*c^4*d^4*f^3*g^2*x - 3*c^4*d^4*f^4*g + 16*a^4*g^5*e^4 + 8*(
3*a^3*c*d*g^5*x - 5*a^3*c*d*f*g^4)*e^3 + 2*(a^2*c^2*d^2*g^5*x^2 - 34*a^2*c^2*d^2*f*g^4*x + 13*a^2*c^2*d^2*f^2*
g^3)*e^2 - (3*a*c^3*d^3*g^5*x^3 + 13*a*c^3*d^3*f*g^4*x^2 - 55*a*c^3*d^3*f^2*g^3*x - a*c^3*d^3*f^3*g^2)*e)*sqrt
(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(x*e + d))/(c^3*d^4*f^3*g^7*x^4 + 4*c^3*d^4*f^4*g^6*x^3 + 6*c^3*d^
4*f^5*g^5*x^2 + 4*c^3*d^4*f^6*g^4*x + c^3*d^4*f^7*g^3 - (a^3*g^10*x^5 + 4*a^3*f*g^9*x^4 + 6*a^3*f^2*g^8*x^3 +
4*a^3*f^3*g^7*x^2 + a^3*f^4*g^6*x)*e^4 + (3*a^2*c*d*f*g^9*x^5 - a^3*d*f^4*g^6 + (12*a^2*c*d*f^2*g^8 - a^3*d*g^
10)*x^4 + 2*(9*a^2*c*d*f^3*g^7 - 2*a^3*d*f*g^9)*x^3 + 6*(2*a^2*c*d*f^4*g^6 - a^3*d*f^2*g^8)*x^2 + (3*a^2*c*d*f
^5*g^5 - 4*a^3*d*f^3*g^7)*x)*e^3 - 3*(a*c^2*d^2*f^2*g^8*x^5 - a^2*c*d^2*f^5*g^5 + (4*a*c^2*d^2*f^3*g^7 - a^2*c
*d^2*f*g^9)*x^4 + 2*(3*a*c^2*d^2*f^4*g^6 - 2*a^2*c*d^2*f^2*g^8)*x^3 + 2*(2*a*c^2*d^2*f^5*g^5 - 3*a^2*c*d^2*f^3
*g^7)*x^2 + (a*c^2*d^2*f^6*g^4 - 4*a^2*c*d^2*f^4*g^6)*x)*e^2 + (c^3*d^3*f^3*g^7*x^5 - 3*a*c^2*d^3*f^6*g^4 + (4
*c^3*d^3*f^4*g^6 - 3*a*c^2*d^3*f^2*g^8)*x^4 + 6*(c^3*d^3*f^5*g^5 - 2*a*c^2*d^3*f^3*g^7)*x^3 + 2*(2*c^3*d^3*f^6
*g^4 - 9*a*c^2*d^3*f^4*g^6)*x^2 + (c^3*d^3*f^7*g^3 - 12*a*c^2*d^3*f^5*g^5)*x)*e), -1/64*(3*(c^4*d^5*g^4*x^4 +
4*c^4*d^5*f*g^3*x^3 + 6*c^4*d^5*f^2*g^2*x^2 + 4*c^4*d^5*f^3*g*x + c^4*d^5*f^4 + (c^4*d^4*g^4*x^5 + 4*c^4*d^4*f
*g^3*x^4 + 6*c^4*d^4*f^2*g^2*x^3 + 4*c^4*d^4*f^3*g*x^2 + c^4*d^4*f^4*x)*e)*sqrt(c*d*f*g - a*g^2*e)*arctan(sqrt
(c*d*f*g - a*g^2*e)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(x*e + d)/(c*d^2*g*x + a*g*x*e^2 + (c*d*g*
x^2 + a*d*g)*e)) - (3*c^4*d^4*f*g^4*x^3 + 11*c^4*d^4*f^2*g^3*x^2 - 11*c^4*d^4*f^3*g^2*x - 3*c^4*d^4*f^4*g + 16
*a^4*g^5*e^4 + 8*(3*a^3*c*d*g^5*x - 5*a^3*c*d*f*g^4)*e^3 + 2*(a^2*c^2*d^2*g^5*x^2 - 34*a^2*c^2*d^2*f*g^4*x + 1
3*a^2*c^2*d^2*f^2*g^3)*e^2 - (3*a*c^3*d^3*g^5*x^3 + 13*a*c^3*d^3*f*g^4*x^2 - 55*a*c^3*d^3*f^2*g^3*x - a*c^3*d^
3*f^3*g^2)*e)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(x*e + d))/(c^3*d^4*f^3*g^7*x^4 + 4*c^3*d^4*f^4*
g^6*x^3 + 6*c^3*d^4*f^5*g^5*x^2 + 4*c^3*d^4*f^6*g^4*x + c^3*d^4*f^7*g^3 - (a^3*g^10*x^5 + 4*a^3*f*g^9*x^4 + 6*
a^3*f^2*g^8*x^3 + 4*a^3*f^3*g^7*x^2 + a^3*f^4*g^6*x)*e^4 + (3*a^2*c*d*f*g^9*x^5 - a^3*d*f^4*g^6 + (12*a^2*c*d*
f^2*g^8 - a^3*d*g^10)*x^4 + 2*(9*a^2*c*d*f^3*g^7 - 2*a^3*d*f*g^9)*x^3 + 6*(2*a^2*c*d*f^4*g^6 - a^3*d*f^2*g^8)*
x^2 + (3*a^2*c*d*f^5*g^5 - 4*a^3*d*f^3*g^7)*x)*e^3 - 3*(a*c^2*d^2*f^2*g^8*x^5 - a^2*c*d^2*f^5*g^5 + (4*a*c^2*d
^2*f^3*g^7 - a^2*c*d^2*f*g^9)*x^4 + 2*(3*a*c^2*d^2*f^4*g^6 - 2*a^2*c*d^2*f^2*g^8)*x^3 + 2*(2*a*c^2*d^2*f^5*g^5
 - 3*a^2*c*d^2*f^3*g^7)*x^2 + (a*c^2*d^2*f^6*g^4 - 4*a^2*c*d^2*f^4*g^6)*x)*e^2 + (c^3*d^3*f^3*g^7*x^5 - 3*a*c^
2*d^3*f^6*g^4 + (4*c^3*d^3*f^4*g^6 - 3*a*c^2*d^3*f^2*g^8)*x^4 + 6*(c^3*d^3*f^5*g^5 - 2*a*c^2*d^3*f^3*g^7)*x^3
+ 2*(2*c^3*d^3*f^6*g^4 - 9*a*c^2*d^3*f^4*g^6)*x^2 + (c^3*d^3*f^7*g^3 - 12*a*c^2*d^3*f^5*g^5)*x)*e)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d)**(3/2)/(g*x+f)**5,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^5,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}}{{\left (f+g\,x\right )}^5\,{\left (d+e\,x\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/((f + g*x)^5*(d + e*x)^(3/2)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/((f + g*x)^5*(d + e*x)^(3/2)), x)

________________________________________________________________________________________